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02215, USA 

Received 20 June 1983 

Abstract. An exact enumeration approach is developed for the backbone fractal of the 
incipient infinite cluster at the percolation threshold. We use this approach to calculate 
exactly the first low-density expansion of LBB@) for arbitrary system dimensionality d, 
where L B B @ )  is the mean number of backbone bonds and p is the bond occupation 
probability. Standard series extrapolation methods provide estimates of the fractal 
dimension of the backbone for all d ;  these disagree with the Sierpinski gasket model of 
the backbone. We also calculate the first low-density expansions of Lmin@) and L e d @ )  

which are, respectively, the mean number of bonds in the minimum path between i and 
i and the mean number of singly connected (‘red’) bonds. 

How can one describe the flow of fluid in random porous media? This important 
question has long eluded explanation. Recently, considerable attention has been 
focused on the utility of fractals as models of random media. In particular, the topology 
of the network that exists just at the onset of fluid flow has been modelled by percolation 
theory. Bonds are considered intact if fluid can flow through them. When the fraction 
of bonds is small, the system consists of many small finite clusters. However, as the 
bond fraction approaches a critical value pc the clusters grow large and ramified until 
at pc fluid can flow. If we consider the network of intact bonds right at pc, there will 
be a subset of bonds that carry fluid (‘backbone’ bonds) and a remainder that does 
not (‘dangling ends’). The structure of the backbone remains an important open 
question. Two models of the backbone have been discussed in the literature. In one 
(Gefen et a1 1981), the backbone is replaced by a d-dimensional Sierpinski gasket. 
In the other (Stanley 1977, Coniglio 1981, 1982, Pike and Stanley 1981, Stanley and 
Coniglio 1983), the backbone is considered to consist of an alternating sequence of 
singly connected (‘red’) bonds and multiply connected (‘blue’) bonds; these are shown 
in colour as figure 5 of Hamann (1983). 

The advantage of the Sierpinski gasket model of the backbone is that one can 
calculate exactly its fractal dimension, DB = ln(d + l>/ln 2. Hence it is important to 
obtain estimates of DB for the actual backbone of percolation clusters. Thus far, the 
only efforts have been Monte Carlo simulations in d = 2, 3 for the backbone order 
parameter exponent Pe;  however, the order parameter is extremely difficult to calculate 
by Monte Carlo methods (Kirkpatrick 1978, Li and Streider 1982). Also, a limited 
attempt has been made to estimate the field-like scaling power yl, by large-cell 
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position-space renormalisation group; however, this work was limited to d = 2. The 
Sierpinski gasket model gives reasonable quantitative values for d = 2, 3 but not for 
higher d.  For this and other reasons, it is highly desirable to have calculations of df 
for the backbone for general d, in order that one can better assess the relative merits 
of various models of backbone topology. To this end, here we present an exact 
enumeration approach for the backbone fractal, and calculate the first ten terms in 
the low-density expansions for arbitrary d .  We shall see that these ten terms behave 
sufficiently smoothly with increasing order that extrapolations to obtain the asymptotic 
behaviour can be made (table 1) .  

Table 1. Critical exponents characterising the backbone of the incipient infinite cluster 
in percolation. The basic quantities calculated are ls and lmin, since ired = 1 for all d 
(Coniglio 1982). In  order to obtain the exponent for the derived quantities LBB(p) and 
Lmin@), we need yp, which is also tabulated. Finally, to obtain the backbone fractal 
dimension, De,  we need Y. 

YP U 5 B  5min 
P B  In(d + 1) 

D ” = y  DB =- 
In2 

+la1 
3 

1.73 f 0.03Ib’ 

1.66‘d’ 

1.48 * 0.08‘” 

1.41~0.25“’  

1 .16‘d’ 

1.25 k0.15 

d = 3 1.66~0.07“’  0.88*0.02‘b’ 1.61 lt0.07”’ 1.18*0.07”’ 1.83*0.08‘” 2.000‘f’ 

d = 4 1.40‘d’ 0.7IhJ 1.32’; i! 1 .03~0.08”’  1.89::;; 2.322‘” 

d = 5  1.18*0.07 0.6Ih’ 1.16 0.1’” 1.02 * 0.1”’ 1.93 f 0.16”’ 2.585’” 

- 2 + 0.0476~ 
t 0.0186~‘ 

d = 6  1.00’”’ 0.500‘”’ 1.02*0.02”’ 1.02*0.02”’ 2.04*0.04‘” 2.807“’ 

Exact. “’Gefen er al (1981). (a1 

Ib’Gaunt and Sykes (1983). “’ Gaunt er al (1976). 
‘dl Fisch and Harris (1978). 
le’ Gaunt et a1 (1976). 

‘”Harris and Lubensky (1983). 
Stauffer (1979). 
Pike and Stanley (1981). ( I ’  

‘ I )  This work. 

Since the ‘thermal’ scaling power yT = l / v  is the same for the backbone as for the 
full cluster (Shlifer er a1 1979), it is sufficient to calculate only one exponent in addition 
to v. Since low-density expansions are generally more accurate than high-density 
expansions for the same effort, we focus our attention on the exponent lB rather than 

In order to define clearly our approach, it is useful to review how one may calculate 
the exponent y for the full cluster (Essam 1971, Dunn et a1 1975). The pair 
connectedness Pii is defined to be the probability that sites i and j are connected, 

on P B .  
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where vij = 1 if sites i and j are connected (belong to the same cluster) and vij = 0 
otherwise. The square brackets denote a configurational average over all 2N configur- 
ations of an N-bond system. For example, for d = 1, Pij =pIi-”. The mean cluster 
size or ‘susceptibility’ is given by the fluctuation relation 

S@) = x p @ )  = 1 Pij - E -?, 
i j  

where E = @ , - p ) / p , + O +  and y is the mean-size critical exponent. For d = 1, the 
known result (Reynolds et a1 1977) S@) = (1 + p ) / ( l  - p )  - E - ~  follows immediately 
from (16). 

These ideas can be extended to other quantities (Fisch and Harris 1978, Coniglio 
1982). Thus for the backbone we may define 

B.. 11 = [ b , . ~ . , ]  11 11 (2a 1 
where bii is the number of backbone bonds connecting sites i and j. For d = 1, 
Bij = li - j ] p ” - ” .  In analogy with equation ( lb) ,  we may define the ‘backbone suscepti- 
bility’ 

i j  

For d = 1, we have x ~ B @ )  = 2p/(l - p ) ’ .  
Below p c ,  the mean number of backbone bonds L B B  connecting two sites i and j 

that are separated a distance of the order of the correlation length is (Coniglio 1982) 

which defines the critical exponent le for the backbone, 

in the form 
Using the cumulant method, we have developed a low-density expansion for ,yBB@) 

(4) 
n = l  

and have evaluated the coefficients B, (d) in closed form for all d for 1 d n d 10. To 
this end, we have generalised the inclusion-exclusion principle for the pair connected- 
ness function to the backbone. The generalisation arises from the fact that the number 
of backbone bonds between sites i and j ,  like the pair connectedness Pij, is independent 
of any ‘dangling ends’. Therefore we only need self-avoiding walks (SAWS) and loop 
diagrams that are constructed by the union of SAWS between i and j. Thus for any 
graph G the average Bii is given by 

where the summation runs over all subgraphs of the graph G, E ( g )  is the embedding 
constant, b (g) is the number of bonds of g ,  and the cumulant C ( g )  satisfies the recursive 
relation (Essam 1971, Fisch and Harris 1978) 

C(g)  = V ( g )  -1 C(g’) .  
g‘ 

Here V ( g )  is the value of g ,  while g ‘  are the subgraphs of g .  
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For example, consider the simple four-bond graph G (  r:), where the crosses denote 
sites i and j .  Applying (3, we find 

B,  = c ( x  r- "1 p 4 + 2 c  ( x  r "> p 2  

= [ ~(rj) - 2 V( ")I p 4 +  2 v(; ") p 2  
X 

= [4-2 x2]p4+[2x 2]p2. (6a ) 

Had we assigned the value V(g) = 1 for each graph, then we would have recovered 
the usual inclusion-exclusion principle, 

pij  = [ I  - 2  x i lp4+[2  x lip2 = -p4+2p2. (66) 

For the infinite lattice, with two fixed sites i and j ,  there are of course an infinite 
number of SAWS joining i and j (unless the lattice has directed bonds). Therefore we 
cannot perform an exact calculation, but instead must perform an expansion in 
increasing powers of p, by including in the calculation graphs with increasing numbers 
of bonds and multiplying the contribution of each graph by the appropriate lattice 
embedding constant (Fisch 1977). Thus the initial terms in this expansion are 

xBB(P) = c B B (  X -  x )[2dIp + cBB( x - * - x  ~ ( 2 d ) ~  - 1)b2 
+ C B B (  x-'-*-x)[(2d)(2d- i)'b3 
+ C B B (  X -  U -  9 -  . -  x )[2d(2d - 1)3 -4d(d - 1)lp4 

Here the backbone cumulant c B B ( g )  for a diagram g is given by 

c B B ( g )  = v(g)- c B B ( g ' ) s  
g 'Eg  

The expansion (7) increases rapidly in complexity, but the requisite diagrams and 
lattice embedding constants are known through order p" (Baker e? a1 1967, Fisch 
1977). Therefore it is necessary only to apply the recursive relation (6) to each graph 
g and then to calculate the number of backbone bonds in each subgraph g'. The 
general-d expressions in the form of (7) are given in table 2. 

We find that the coefficients B, (d )  in the series for the backbone xBB(P)  are of 
the same form as the coefficients in the series for mean size S(p), 

The (d-independent) coefficients Wn,n-k+l are given in table 2(a) up to n = 10. We 
find for the first two coefficients the simple results 

Wn1=n2"n! 

wn2 = 2n (n  - 1)22n-2(n - l ) !  
Wn3=3n2"-4(n -2)!(6n4-40n3+96nZ-128n +126)+24(n -3)2n-4(n -2). (9c) 
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In order to form the function LBB@) of (3), we must also obtain general-d 
expressions for the mean-size function S@) for bond percolation with site counting 
(as opposed to bond counting, as in the conventional series expansions). Fortunately, 
Fisch and Harris (1978) tabulate the needed results. 

The resulting series were analysed for d = 2 - 6 by the usual extrapolation pro- 
cedures. We found that Pad6 approximants provided the most consistent estimates 
of the backbone exponent la defined in (3), and the results are shown in table 1. 
Table 1 also shows DB = LB/v, the fractal dimension of the backbone. For comparison, 
we include the prediction DB = ln(d + l)/ln 2 of the Sierpinski gasket model. We see 
that the discrepancy is most serious for large d. 

The same procedure developed above for the number of backbone bonds Bij can 
be readily extended to the minimum number of bonds Mii (Middlemiss et al 1980, Pike 
and Stanley, 19811, where Mii = [mijv,i] in analogy to (2a). The general-d results are 
given in table 2(b) while table 1 also gives the results of extrapolation procedures for 
the exponent Cmin defined through 

where 
m 

Similarly we can define 

where Rii = [riivii] is the number of singly connected (‘red’) bonds or links between 
sites i and j. Pike and Stanley (1981) found that LredO)) diverges at p c ,  contrary to 
some intuitive expectations, and Coniglio (1981, 1982) proved rigorously that ired = 1 
for all spatial dimensionalities d. The proof was based on the ‘Lemma’ that L r e d @ )  = 
p (dldp) log S@). We find that Coniglio’s lemma holds ‘term-by-term’ in the sense 
that for each graph in the low-density series expansion, 

In table 2, we tabulate the general-d results for the function E i  Rip 
Although less reliable than direct analysis, an approximation to the functions 

XBB(P), x m i n @ )  and may be obtained by deriving expansions in the variable 
l/a, where a = 2d - 1. Following the procedure used for xP@) (Gaunt and Ruskin 
1978), we find to O(l/v2), 

XBB =xz + (-5x2/(1 - x ) ~ + x / ( ~  - x ) ~ -  1 8 ~ / ( 1  - x )  + 7 x  + x 2 ) c Y 2 + .  . . , 

Xred =xs +[-5x2/(i - + 5 X / ( i  -X)’-5x - 5 x Z ] a - 3  +. . . , 

(13a) 

(136) 

(13c) 

m 
X m i n = X m i n  +( -5x2/ (1  - ~ ) ~ - 3 ~ / ( 1 - ~ ) * - 6 / ( 1  - x ) - x  -3x2)f2+. . , , 
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where x = up. Following the procedure used in deriving 
m 

xY(p) = 1 +(U-'+ 1) (up) r  = (1 +p) / ( l  -up), (14a) 
r = l  

we obtain 
W xz =xzn =xz = (1 +a-') 1 r (up) '  = (a + l)p/(l -up)'. (146) 

In summary, then, we have calculated the first low-density expansions for three 
quantities characterising the backbone fractal of the incipient infinite cluster at the 
percolation threshold. These are LBB, Lmin and Lred which, respectively, are the mean 
number of backbone bonds, the mean length of minimum path, and the mean number 
of 'red' bonds between sites i and j separated by a correlation length. Extrapolations 
for the corresponding critical exponents, LBB and rmin, are presented in table 1 ;  [R is 
known to diverge as 1 / ~  for all d (Coniglio 1982). 

After this work was completed, we received two interesting preprints (Harris 1983, 
Harris and Lubensky 1983) which apply field-theoretic methods to calculate one of 
these quantities, LBB, as a series in ( 6 - 4 ;  for d > 3, their results are not inconsistent 
with ours based on series expansions. 

r = l  

We wish to thank S Redner and especially A Coniglio, as well as A B Harris for 
providing us with a copy of Fisch (1977). 

References 

Baker G A, Gilbert H E, Eve J and Rushbrooke G S 1967 BNL 50053(T-460) (Brookhaven National 

Coniglio A 1981 Phys. Reo. Lett. 46 250 
- 1982 J .  Phys. A: Math. Gen. 15 3829 
Dunn A G, Essam J W and Ritchie D S 1975 J.  Phys. C: Solid State Phys. 8 4219 
Essam J W 1971 J.  Math. Phys. 12 874 
Fisch R 1977 PhD thesis University of Pennsylvania 
Fisch R and Harris A B 1978 Phys. Reo. B 18 416 
Gaunt D S and Ruskin H 1978 J. Phys. A: Math. Gen. 11 1369 
Gaunt D S and Sykes M F 1983 J.  Phys. A: Math. Gen. 16 783 
Gaunt D S, Sykes M F and Ruskin H 1976, J. Phys. A: Marh. Gen. 9 1899 
Gefen Y, Aharony A, Mandelbrot B B and Kirkpatrick S 1981 Phys. Rev. Lett. 47 1771 
Hamann D R 1983 Phys. Today 36 [5] 25 
Harris A B 1983 Preprint 
Harris A B and Lubensky T C 1983 Preprint 
Kirkpatrick S 1978 AIPconference 40 99 
Li P S and Streider W 1982 J.  Phys. C: Solid State Phys. 15 L1235 
Middlemiss K M, Whittington S G and Gaunt D S 1980 J.  Phys. A: Marh. Gen. 13 1835 
Pike R and Stanley H E 1981 J. Phys. A: Marh. Gen. 14 L169 
Reynolds P J,  Stanley H E and Klein W 1977 I.  Phys. A: Marh. Gen. 11 L203 
Shlifer G, Klein W, Reynolds P J and Stanley H E 1979 J.  Phys. A: Marh. Gen. 12 L169 
Stanley H E 1977 J.  Phys. A: Math. Gen. 10 L211 
Stanley H E and Coniglio A 1983 in Percolation Structures and Processes ed G Deutscher, R Zallen and 

Stanley H E, Redner S and Yang Z R 1982 1. Phys. A: Math. Gen. 15 L569 
Stauffer D 1979 Phys. Rep. 54 1 

Laboratory) 

J Adler (Bristol: Adam Hilger) p 101 


