Exact enumeration approach to fractal properties of the percolation backbone and 1/б expansion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L475
(http://iopscience.iop.org/0305-4470/16/13/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Exact enumeration approach to fractal properties of the percolation backbone and $\mathbf{1 / \sigma}$ expansion

Daniel C Hong and H Eugene Stanley
Center for Polymer Studies ${ }^{\dagger}$ and Department of Physics, Boston University, Boston, MA 02215, USA

Received 20 June 1983

Abstract

An exact enumeration approach is developed for the backbone fractal of the incipient infinite cluster at the percolation threshold. We use this approach to calculate exactly the first low-density expansion of $L_{\mathrm{BB}}(p)$ for arbitrary system dimensionality d, where $L_{\mathrm{BB}}(p)$ is the mean number of backbone bonds and p is the bond occupation probability. Standard series extrapolation methods provide estimates of the fractal dimension of the backbone for all d; these disagree with the Sierpinski gasket model of the backbone. We also calculate the first low-density expansions of $L_{\min }(p)$ and $L_{\text {red }}(p)$ which are, respectively, the mean number of bonds in the minimum path between i and j and the mean number of singly connected ('red') bonds.

How can one describe the flow of fluid in random porous media? This important question has long eluded explanation. Recently, considerable attention has been focused on the utility of fractals as models of random media. In particular, the topology of the network that exists just at the onset of fluid flow has been modelled by percolation theory. Bonds are considered intact if fluid can flow through them. When the fraction of bonds is small, the system consists of many small finite clusters. However, as the bond fraction approaches a critical value p_{c} the clusters grow large and ramified until at p_{c} fluid can flow. If we consider the network of intact bonds right at p_{c}, there will be a subset of bonds that carry fluid ('backbone' bonds) and a remainder that does not ('dangling ends'). The structure of the backbone remains an important open question. Two models of the backbone have been discussed in the literature. In one (Gefen et al 1981), the backbone is replaced by a d-dimensional Sierpinski gasket. In the other (Stanley 1977, Coniglio 1981, 1982, Pike and Stanley 1981, Stanley and Coniglio 1983), the backbone is considered to consist of an alternating sequence of singly connected ('red') bonds and multiply connected ('blue') bonds; these are shown in colour as figure 5 of Hamann (1983).

The advantage of the Sierpinski gasket model of the backbone is that one can calculate exactly its fractal dimension, $D_{\mathrm{B}}=\ln (d+1) / \ln 2$. Hence it is important to obtain estimates of D_{B} for the actual backbone of percolation clusters. Thus far, the only efforts have been Monte Carlo simulations in $d=2,3$ for the backbone order parameter exponent β_{B}; however, the order parameter is extremely difficult to calculate by Monte Carlo methods (Kirkpatrick 1978, Li and Streider 1982). Also, a limited attempt has been made to estimate the field-like scaling power y_{h} by large-cell

[^0]position-space renormalisation group; however, this work was limited to $d=2$. The Sierpinski gasket model gives reasonable quantitative values for $d=2,3$ but not for higher d. For this and other reasons, it is highly desirable to have calculations of d_{f} for the backbone for general d, in order that one can better assess the relative merits of various models of backbone topology. To this end, here we present an exact enumeration approach for the backbone fractal, and calculate the first ten terms in the low-density expansions for arbitrary d. We shall see that these ten terms behave sufficiently smoothly with increasing order that extrapolations to obtain the asymptotic behaviour can be made (table 1).

Table 1. Critical exponents characterising the backbone of the incipient infinite cluster in percolation. The basic quantities calculated are ζ_{B} and $\zeta_{\text {min }}$, since $\zeta_{\text {red }}=1$ for all d (Coniglio 1982). In order to obtain the exponent for the derived quantities $L_{\mathrm{BB}}(p)$ and $L_{\min }(p)$, we need γ_{p}, which is also tabulated. Finally, to obtain the backbone fractal dimension, D_{R}, we need ν.

	$\gamma_{\text {P }}$	ν	ζ_{B}	$\zeta_{\text {min }}$	$D_{\mathrm{B}}=\frac{\rho_{\mathrm{B}}}{\nu}$	$D_{\mathrm{B}}=\frac{\ln (d+1)}{\ln 2}$
$d=2$	$\frac{43}{18}$ (a)	$\frac{4}{3}(\mathrm{a})$	$2.40 \pm 0.05^{(i)}$	$\begin{aligned} & 1.38 \pm 0.1^{(\mathrm{j})} \\ & 1.49 \pm 0.02^{(\mathrm{ij)}} \end{aligned}$	$1.80 \pm 0.04^{(j)}$	$1.585^{(f)}$
$d=3$	$\begin{aligned} & 1.73 \pm 0.03^{(\mathrm{b})} \\ & 1.66 \pm 0.07^{(\mathrm{c})} \\ & 1.66^{(\mathrm{d})} \end{aligned}$	$0.88 \pm 0.02^{\text {(b) }}$	$1.61 \pm 0.07^{(j)}$	$1.18 \pm 0.07^{(j)}$	$1.83 \pm 0.08^{(j)}$	$2.000^{(f)}$
$d=4$	$\begin{aligned} & 1.48 \pm 0.08^{(e)} \\ & 1.40^{(\mathrm{d})} \\ & 1.41 \pm 0.25^{(\mathrm{c})} \end{aligned}$	$0.7^{\text {(h) }}$	$1.32_{-0.15}^{+0.10}$	$1.03 \pm 0.08^{(j)}$	$1.899_{-0.21}^{+0.14}$	$2.322^{(f)}$
$d=5$	$\begin{aligned} & 1.16^{(\mathrm{d})} \\ & 1.18 \pm 0.07 \\ & 1.25 \pm 0.15 \end{aligned}$	$0.6{ }^{\text {(h) }}$	$1.16 \cdot 0.1^{(\mathrm{j})}$	$1.02 \pm 0.1^{(1)}$	$1.93 \pm 0.16^{\text {1 }}$	$2.585^{(f)}$
$d=6-\varepsilon$	$1+\frac{1}{7} \varepsilon+0.046 \varepsilon^{2}$	$0.5+\frac{5}{84} \varepsilon$	$\begin{aligned} & 1+\frac{1}{7} \varepsilon^{(\mathrm{g})} \\ & \quad+0.025 \varepsilon^{2} \end{aligned}$	-	$\begin{aligned} 2 & +0.0476 \varepsilon \\ & +0.0186 \varepsilon^{2} \end{aligned}$	-
$d=6$	$1.00^{(a)}$	$0.500^{(9)}$	$1.02 \pm 0.02^{(j)}$	$1.02 \pm 0.02^{(j)}$	$2.04 \pm 0.04{ }^{(j)}$	$2.807^{(f)}$
${ }^{(a)}$ Exact. ${ }^{\text {(b) }}$ Gaunt and Sykes (1983). ${ }^{(c)}$ Gaunt et al (1976). ${ }^{(d)}$ Fisch and Harris (1978). ${ }^{(e)}$ Gaunt et al (1976).			${ }^{(t)}$ Gefen et al (1981). ${ }^{(g)}$ Harris and Lubensky (1983). ${ }^{\text {(h) }}$ Stauffer (1979). ${ }^{\text {(i) }}$ Pike and Stanley (1981). ${ }^{(j)}$ This work.			

Since the 'thermal' scaling power $y_{\mathrm{T}}=1 / \nu$ is the same for the backbone as for the full cluster (Shlifer et al 1979), it is sufficient to calculate only one exponent in addition to ν. Since low-density expansions are generally more accurate than high-density expansions for the same effort, we focus our attention on the exponent ζ_{B} rather than on β_{B}.

In order to define clearly our approach, it is useful to review how one may calculate the exponent γ for the full cluster (Essam 1971, Dunn et al 1975). The pair connectedness $P_{i j}$ is defined to be the probability that sites i and j are connected,

$$
\begin{equation*}
P_{i j}=\left[\nu_{i j}\right]_{\mathrm{config}}, \tag{1a}
\end{equation*}
$$

where $\nu_{i j}=1$ if sites i and j are connected (belong to the same cluster) and $\nu_{i j}=0$ otherwise. The square brackets denote a configurational average over all 2^{N} configurations of an N-bond system. For example, for $d=1, P_{i j}=p^{i-i \mid}$. The mean cluster size or 'susceptibility' is given by the fluctuation relation

$$
\begin{equation*}
S(p)=\chi_{p}(p)=\sum_{i j} P_{i j} \sim \varepsilon^{-\gamma}, \tag{1b}
\end{equation*}
$$

where $\varepsilon=\left(p_{c}-p\right) / p_{c} \rightarrow 0^{+}$and γ is the mean-size critical exponent. For $d=1$, the known result (Reynolds et al 1977) $\boldsymbol{S}(p)=(1+p) /(1-p) \sim \varepsilon^{-1}$ follows immediately from (1b).

These ideas can be extended to other quantities (Fisch and Harris 1978, Coniglio 1982). Thus for the backbone we may define

$$
\begin{equation*}
B_{i j}=\left[b_{i j} \nu_{i j}\right] \tag{2a}
\end{equation*}
$$

where $b_{i j}$ is the number of backbone bonds connecting sites i and j. For $d=1$, $B_{i j}=|i-j| p^{|i-j|}$. In analogy with equation (1b), we may define the 'backbone susceptibility'

$$
\begin{equation*}
\chi_{\mathrm{BB}}(p)=\sum_{i j} B_{i j} . \tag{2b}
\end{equation*}
$$

For $d=1$, we have $\chi_{\mathrm{BB}}(p)=2 p /(1-p)^{2}$.
Below p_{c}, the mean number of backbone bonds L_{BB} connecting two sites i and j that are separated a distance of the order of the correlation length is (Coniglio 1982)

$$
\begin{equation*}
L_{\mathrm{BB}}(p)=\sum_{i j} B_{i j} / \sum_{i j} P_{i j} \sim \varepsilon^{-\zeta_{\mathrm{B}}}, \tag{3}
\end{equation*}
$$

which defines the critical exponent ζ_{B} for the backbone.
Using the cumulant method, we have developed a low-density expansion for $\chi_{\text {вB }}(p)$ in the form

$$
\begin{equation*}
\chi_{\mathrm{BB}}(p)=\sum_{n=1}^{\infty} B_{n}(d) p^{n}, \tag{4}
\end{equation*}
$$

and have evaluated the coefficients $B_{n}(d)$ in closed form for all d for $1 \leqslant n \leqslant 10$. To this end, we have generalised the inclusion-exclusion principle for the pair connectedness function to the backbone. The generalisation arises from the fact that the number of backbone bonds between sites i and j, like the pair connectedness $P_{i j}$, is independent of any 'dangling ends'. Therefore we only need self-avoiding walks (SAWs) and loop diagrams that are constructed by the union of saws between i and j. Thus for any graph G the average $B_{i j}$ is given by

$$
\begin{equation*}
B_{i j}=\sum_{g} C(g) E(g) p^{b(g)}, \tag{5a}
\end{equation*}
$$

where the summation runs over all subgraphs of the graph $G, E(g)$ is the embedding constant, $b(\mathrm{~g})$ is the number of bonds of g, and the cumulant $C(g)$ satisfies the recursive relation (Essam 1971, Fisch and Harris 1978)

$$
\begin{equation*}
C(g)=V(g)-\sum_{g^{\prime}} C\left(g^{\prime}\right) . \tag{5b}
\end{equation*}
$$

Here $V(g)$ is the value of g, while g^{\prime} are the subgraphs of g.

For example, consider the simple four-bond graph $G\left(\Gamma_{\times}{ }^{\times}\right)$, where the crosses denote sites i and j. Applying (5), we find

$$
\begin{align*}
B_{i j} & \left.=C\left(\Gamma_{\times}^{\times}\right]\right) p^{4}+2 C\left(\Gamma_{\times}^{\times}\right) p^{2} \\
& \left.=\left[V\left(\Gamma_{\times}^{\times}-\right]\right)-2 V\left(\Gamma_{\times}^{\times}\right)\right] p^{4}+2 V\left(\Gamma_{\times}^{\times}\right) p^{2} \\
& =[4-2 \times 2] p^{4}+[2 \times 2] p^{2} . \tag{6a}
\end{align*}
$$

Had we assigned the value $V(g)=1$ for each graph, then we would have recovered the usual inclusion-exclusion principle,

$$
\begin{equation*}
P_{i j}=[1-2 \times 1] p^{4}+[2 \times 1] p^{2}=-p^{4}+2 p^{2} . \tag{6b}
\end{equation*}
$$

For the infinite lattice, with two fixed sites i and j, there are of course an infinite number of saws joining i and j (unless the lattice has directed bonds). Therefore we cannot perform an exact calculation, but instead must perform an expansion in increasing powers of p, by including in the calculation graphs with increasing numbers of bonds and multiplying the contribution of each graph by the appropriate lattice embedding constant (Fisch 1977). Thus the initial terms in this expansion are

$$
\begin{align*}
& \chi_{\mathrm{BB}}(p)=C_{\mathrm{BB}}(\times-\times)[2 d] p+C_{\mathrm{BB}}(\times--\times)[(2 d)(2 d-1)] p^{2} \\
&+C_{\mathrm{BB}}(\times-\cdots-\times)\left[(2 d)(2 d-1)^{2}\right] p^{3} \\
&+C_{\mathrm{BB}}(\times-\cdots \cdots-\times)\left[2 d(2 d-1)^{3}-4 d(d-1)\right] p^{4} \\
&+\left[4 C_{\mathrm{BB}}\binom{1-\times}{\times-.}+8 C_{\mathrm{BB}}\binom{-\dot{j}}{\times-\times}\right] d(d-1) p^{4} . \tag{7a}
\end{align*}
$$

Here the backbone cumulant $C_{\mathrm{BB}}(g)$ for a diagram g is given by

$$
\begin{equation*}
C_{\mathrm{BB}}(g)=V(g)-\sum_{g^{\prime} \in g} C_{\mathrm{BB}}\left(g^{\prime}\right) . \tag{7b}
\end{equation*}
$$

The expansion (7) increases rapidly in complexity, but the requisite diagrams and lattice embedding constants are known through order p^{10} (Baker et al 1967, Fisch 1977). Therefore it is necessary only to apply the recursive relation (6) to each graph g and then to calculate the number of backbone bonds in each subgraph g^{\prime}. The general-d expressions in the form of (7) are given in table 2.

We find that the coefficients $B_{n}(d)$ in the series for the backbone $\chi_{\mathrm{BB}}(p)$ are of the same form as the coefficients in the series for mean size $S(p)$,

$$
\begin{equation*}
B_{n}(d)=\sum_{k=1}^{n} W_{n, n-k+1}\binom{d}{k} . \tag{8}
\end{equation*}
$$

The (d-independent) coefficients $W_{n, n-k+1}$ are given in table $2(a)$ up to $n=10$. We find for the first two coefficients the simple results

$$
\begin{gather*}
W_{n 1}=n 2^{n} n! \tag{9a}\\
W_{n 2}=2 n(n-1)^{2} 2^{n-2}(n-1)! \tag{9b}\\
W_{n 3}=\frac{1}{3} n 2^{n-4}(n-2)!\left(6 n^{4}-40 n^{3}+96 n^{2}-128 n+126\right)+24(n-3) 2^{n-4}(n-2) \tag{9c}
\end{gather*}
$$

Table 2. General-d low-density series. (a) The coefficients $W_{n, n-k+1}$ appearing in the expression (8) for $B_{n}(d)$, which in turn are the coefficients in the expansion (4) for the backbone susceptibility. The leading coefficients $W_{n m}$ are given in equations ($9 a$), (b), and (c). (b) The analogous coefficients from which one constructs the coefficients $M_{n}(d)$ of the mean number of bonds in the minimum path of ($10 b$). The leading coefficients are the same as ($9 a$) and ($9 b$), while ($9 c$) is replaced by $W_{n 3}=3^{-1} n 2^{n-4}(n-2)!\left(6 n^{4}-40 n^{3}+96 n^{2}-128 n+126\right)+8 \times 2^{n-4}(n-3)(n-2)!(c)$ The analogues appearing in $R_{n}(d)$ of $(11 b)$. Again, the leading coefficients are the same as ($9 a$) and ($9 b$), while ($9 c$) is replaced by $W_{n 3}=3^{-1} 2^{n-4}(n-2)!\times\left(6 n^{4}-40 n^{3}+96 n^{2}-128 n+126\right)$.

	1	2	3	4	5	6	7	8	9	10
(a)										
1	2									
2	4	16								
3	6	96	144							
4	8	384	1728	1536						
5	10	1352	13296	30720	19200					
6	12	4272	84672	381312	576000	276480				
7	14	12992	488496	3810048	10440960	11612160	4515840			
8	16	37040	2638608	33713664	149160960	288368640	252887040	82575360		
9	18	104016	13716048	276767616	1855644480	5546880000	8227215360	5945425920	1672151040	
10	20	274504	68358432	2151197568	21096368000	91577917440	204343050240	245114634240	150493593600	37158912000
(b)										
2	4	16								
3	6	96	144							
4	8	352	1728	1536						
5	10	1224	12912	30720	19200					
6	12	3508	78816	376704	576000	276480				
7	14	10748	444648	3694848	10379520	11612160	4515840			
8	16	27052	2303880	32024256	146956800	287447040	252887040	82575360		
9	18	79076	11790120	258819648	1809174720	5502274560	8211732480	5945425920	1672151040	

	(c)									
)	2									
2	4	16								
3	6	96	144							
4	8	336	1728	1536						
5	10	1160	12720	30720	19200					
6	12	3144	76032	374400	576000	276480				
7	14	9716	424200	3639552	10348800	11612160	4515840			
8	16	22592	2154048	31241472	145889280	286986240	252887040	8257360		
9	18	68436	10948536	250681536	1787313600	5480524800	8203991040	594525920	1672151040	
10	20	143080	51796080	1902043520	20037046400	89773286400	202916044800	244681113600	150493593600	37158912000

In order to form the function $L_{\mathrm{BB}}(p)$ of (3), we must also obtain general- d expressions for the mean-size function $S(p)$ for bond percolation with site counting (as opposed to bond counting, as in the conventional series expansions). Fortunately, Fisch and Harris (1978) tabulate the needed results.

The resulting series were analysed for $d=2-6$ by the usual extrapolation procedures. We found that Padé approximants provided the most consistent estimates of the backbone exponent ζ_{B} defined in (3), and the results are shown in table 1. Table 1 also shows $D_{\mathrm{B}}=\zeta_{\mathrm{B}} / \nu$, the fractal dimension of the backbone. For comparison, we include the prediction $D_{\mathrm{B}}=\ln (d+1) / \ln 2$ of the Sierpinski gasket model. We see that the discrepancy is most serious for large d.

The same procedure developed above for the number of backbone bonds $B_{i j}$ can be readily extended to the minimum number of bonds $M_{i j}$ (Middlemiss et al 1980, Pike and Stanley, 1981), where $M_{i j}=\left[m_{i j} \nu_{i j}\right]$ in analogy to ($2 a$). The general- d results are given in table $2(b)$ while table 1 also gives the results of extrapolation procedures for the exponent $\zeta_{\text {min }}$ defined through

$$
\begin{equation*}
L_{\min }(p)=\sum_{j} M_{i j} / \sum P_{i j}=\chi_{\min }(p) / \chi_{p}(p) \sim \varepsilon^{-\zeta_{\min }}, \tag{10a}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{\min }(p)=\sum_{n=1}^{\infty} M_{n}(d) p^{n} \tag{10b}
\end{equation*}
$$

Similarly we can define

$$
\begin{align*}
& L_{\mathrm{red}}(p)=\sum_{i} R_{i j} / \sum P_{i j}=\chi_{\mathrm{red}}(p) / \chi_{p}(p) \sim \varepsilon^{-\zeta_{\mathrm{red}}}, \tag{11a}\\
& \chi_{\mathrm{red}}(p)=\sum_{n=1}^{\infty} R_{n}(d) p^{n} \tag{11b}
\end{align*}
$$

where $R_{i j}=\left[r_{i j} \nu_{i j}\right]$ is the number of singly connected ('red') bonds or links between sites i and j. Pike and Stanley (1981) found that $L_{\text {red }}(p)$ diverges at p_{c}, contrary to some intuitive expectations, and Coniglio $(1981,1982)$ proved rigorously that $\zeta_{\text {red }}=1$ for all spatial dimensionalities d. The proof was based on the 'Lemma' that $L_{\text {red }}(p)=$ $p(\mathrm{~d} / \mathrm{d} p) \log S(p)$. We find that Coniglio's lemma holds 'term-by-term' in the sense that for each graph in the low-density series expansion,

$$
\begin{equation*}
L_{i j}=p(\mathrm{~d} / \mathrm{d} p) \log P_{i j} \tag{12}
\end{equation*}
$$

In table 2, we tabulate the general- d results for the function $\Sigma_{j} R_{i j}$.
Although less reliable than direct analysis, an approximation to the functions $\chi_{\mathrm{BB}}(p), \chi_{\min }(p)$ and $\chi_{\text {red }}(p)$ may be obtained by deriving expansions in the variable $1 / \sigma$, where $\sigma=2 d-1$. Following the procedure used for $\chi_{p}(p)$ (Gaunt and Ruskin 1978), we find to $\mathrm{O}\left(1 / \sigma^{2}\right)$,

$$
\begin{align*}
& \chi_{\mathrm{BB}}=\chi_{\mathrm{BB}}^{\mathrm{CT}}+\left(-5 x^{2} /(1-x)^{3}+x /(1-x)^{2}-18 x /(1-x)+7 x+x^{2}\right) \sigma^{-2}+\ldots, \tag{13a}\\
& \chi_{\text {min }}=\chi_{\mathrm{min}}^{\mathrm{CT}}+\left(-5 x^{2} /(1-x)^{3}-3 x /(1-x)^{2}-6 /(1-x)-x-3 x^{2}\right) \sigma^{-2}+\ldots, \tag{13b}\\
& \chi_{\mathrm{red}}=\chi_{\mathrm{red}}^{\mathrm{CT}}+\left[-5 x^{2} /(1-x)^{3}-5 x /(1-x)^{2}-5 x-5 x^{2}\right] \sigma^{-3}+\ldots, \tag{13c}
\end{align*}
$$

where $x=\sigma p$. Following the procedure used in deriving

$$
\begin{equation*}
\chi_{p}^{\mathrm{CT}}(p)=1+\left(\sigma^{-1}+1\right) \sum_{r=1}^{\infty}(\sigma p)^{r}=(1+p) /(1-\sigma p) \tag{14a}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\chi_{\mathrm{BB}}^{\mathrm{CT}}=\chi_{\min }^{\mathrm{CT}}=\chi_{\mathrm{red}}^{\mathrm{CT}}=\left(1+\sigma^{-1}\right) \sum_{r=1}^{\infty} r(\sigma p)^{r}=(\sigma+1) p /(1-\sigma p)^{2} . \tag{14b}
\end{equation*}
$$

In summary, then, we have calculated the first low-density expansions for three quantities characterising the backbone fractal of the incipient infinite cluster at the percolation threshold. These are $L_{\mathrm{BB}}, L_{\text {min }}$ and $L_{\text {red }}$ which, respectively, are the mean number of backbone bonds, the mean length of minimum path, and the mean number of 'red' bonds between sites i and j separated by a correlation length. Extrapolations for the corresponding critical exponents, ζ_{BB} and $\zeta_{\text {min }}$, are presented in table $1 ; \zeta_{\mathrm{R}}$ is known to diverge as $1 / \varepsilon$ for all d (Coniglio 1982).

After this work was completed, we received two interesting preprints (Harris 1983, Harris and Lubensky 1983) which apply field-theoretic methods to calculate one of these quantities, L_{BB}, as a series in $(6-d)$; for $d>3$, their results are not inconsistent with ours based on series expansions.

We wish to thank S Redner and especially A Coniglio, as well as A B Harris for providing us with a copy of Fisch (1977).

References

Baker G A, Gilbert H E, Eve J and Rushbrooke G S 1967 BNL 50053(T-460) (Brookhaven National Laboratory)
Coniglio A 1981 Phys. Rev. Lett. 46250
-1982 J. Phys. A: Math. Gen. 153829
Dunn A G, Essam J W and Ritchie D S 1975 J. Phys. C: Solid State Phys. 84219
Essam J W 1971 J. Math. Phys, 12874
Fisch R 1977 PhD thesis University of Pennsylvania
Fisch R and Harris A B 1978 Phys. Rev. B 18416
Gaunt D S and Ruskin H 1978 J. Phys. A: Math. Gen. 111369
Gaunt D S and Sykes M F 1983 J. Phys. A: Math. Gen. 16783
Gaunt D S, Sykes M F and Ruskin H 1976, J. Phys. A: Math. Gen. 91899
Gefen Y, Aharony A, Mandelbrot B B and Kirkpatrick S 1981 Phys. Rev. Lett. 471771
Hamann D R 1983 Phys. Today 36 [5] 25
Harris A B 1983 Preprint
Harris A B and Lubensky T C 1983 Preprint
Kirkpatrick S 1978 AIP conference 4099
Li P S and Streider W 1982 J. Phys. C: Solid State Phys. 15 L1235
Middlemiss K M, Whittington S G and Gaunt D S 1980 J. Phys. A: Math. Gen. 131835
Pike R and Stanley H E 1981 J. Phys. A: Math. Gen. 14 L169
Reynolds P J, Stanley H E and Klein W 1977 J. Phys. A: Math. Gen. 11 L203
Shlifer G, Klein W, Reynolds P J and Stanley H E 1979 J. Phys. A: Math. Gen. 12 L169
Stanley H E 1977 J. Phys. A: Math. Gen. 10 L211
Stanley H E and Coniglio A 1983 in Percolation Structures and Processes ed G Deutscher, R Zallen and J Adler (Bristol: Adam Hilger) p 101
Stanley H E, Redner S and Yang Z R 1982 J. Phys. A: Math. Gen. 15 L569
Stauffer D 1979 Phys. Rep. 541

[^0]: + Supported in part by grants from NSF, ARO and ONR.

